Decision-making in Uncertain Dynamic Environments: from Policy Optimization to Online Learning

Rich Pai

Advisor: Prof. Yang Zheng Qualifying Exam Talk Nov. 25, 2025

Optimal control problem

Control as optimization over time subject to dynamics

$$\min_{\pi} egin{array}{c} ext{state} & ext{action/input} \ ext{min} \ ext{} \sum_{t=1}^{T} ext{cost}_t(x_t, u_t) & ext{disturbance} \ ext{} \ ext{s.t.} & x_{t+1} = ext{dynamics}_t(x_t, u_t, w_t) \ \end{array}$$

A basic formulation with *linear dynamics and quadratic costs*: **LQR**

- Linear dynamics: $x_{t+1} = Ax_t + Bu_t + w_t$
- ullet Quadratic cost: $x_t^ op Q x_t + u_t^ op R u_t$

Goal: find a policy to drive the state to the origin with small control effort

Control as online decision-making under uncertainty

$$\min_{\pi} \sum_{t=1}^{T} \mathrm{cost}_t(x_t, u_t)$$
 u_t x_t s.t. $x_{t+1} = \mathrm{dynamics}_t(x_t, u_t, w_t)$ Assume **observation of** x_t and hence possibly $w_{1:t-1}$ $u_t = \pi_t(x_{0:t-1}, u_{1:t-1}, w_{1:t-1})$

At each time step, the agent

- 1. Picks u_t based on all available (past & current) information
- 2. Suffers stage cost, and x_t evolves according to dynamics

Sources of **Uncertainty**

- dynamics A, B, disturbance w_t
- or even cost: Q, R

Lots of successful applications

Refs: Silver et al., Nature 2017; Akkaya et al., 2019; Schulman et al., 2017; Bojarski et al., 2016; etc.

Talk outline

(1) Offline Planning \rightarrow (2) Policy Optimization \rightarrow (3) Online Learning

Part I.

Policy optimization of mixed $\mathcal{H}_2/\mathcal{H}_{\infty}$ control: benign nonconvexity

Part II.

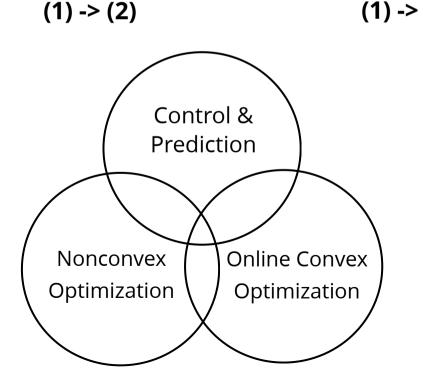
Online tracking with predictions: dynamic regret analysis of MPC

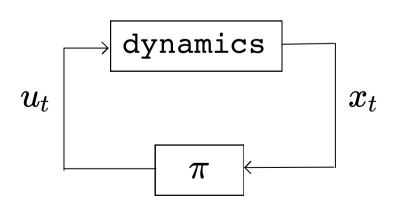
(1) -> (3)

Part III.

Online adaptive control & prediction under nonstationarity

Generalize (1) & (2)





Classical view: offline synthesis (planning)

Consider linear dynamics $x_{t+1} = Ax_t + Bu_t + w_t$

Two main frameworks under different assumptions on $oldsymbol{w}_t$

LQR/H2 optimal control

• iid Gaussian noise

$$\min_{\pi} \mathbb{E}\left[\sum_{t=1}^T x_t^T Q x_t + u_t^T R u_t
ight]$$

• Overly optimistic

Hinfty robust control

worst-case bounded noise

$$\min_{\pi} \max_{\|w_t\| < c} \sum_{t=1}^T x_t^T Q x_t + u_t^T R u_t$$

- Overly pessimistic
- ullet Globally optimal policy [B1217, ZDG96, BB08]: linear state feedback policy $u_t = K_t^\star x_t$
- Optimal gains K_t^{\star} defined recursively by A, B, Q, R using dynamic programming

Modern view: nonconvex policy optimization

Same disturbance models as in classical planning, so we know the form of the optimal policy

- View control cost directly as a function of the policy parameter
- ullet For example, with $u_t = Kx_t$, the LQR csot $J(K) := \mathbb{E}\left[\sum_{t=1}^T x_t^T Q x_t + u_t^T R u_t
 ight]$
 - Benefits:
- 1. Model-free implementation
- 2. Scalable to large-scale systems
- Research:
- 1. Structural aspect: landscape analysis
- 2. Algorithmic aspect: local policy search

Policy optimization of mixed H2/Hinfty control:

Benign nonconvexity and global optimality

Extended Convex Lifting (ECL):

Bridge policy optimization and classical approaches (LMI, Riccati)

Modern view: online nonstochastic control

Instead of **planning** or **optimizing** under some specific disturbance model, we want an online method with

- Adaptivity & instance-optimality wrt the realized disturbance:
 - adapts efficiently to the actual nonstochastic disturbance
- Efficient methods for general adversarial convex costs:
 - extends beyond a given (known) quadratic cost in classical setting

Dynamic regret analysis of model predictive control (**MPC**) in online tracking

for Koopman-linearizable nonlinear systems

Online learning for control and prediction of LDS:

Adaptive regret minimization in nonstationary environments

From offline synthesis o policy optimization o online adaptive control

Paradigms

Offline planning.

Classical control under a specific disturbance model

Policy optimization.

Refine policy via (model-free) local policy update

Online learning for control.

Adapt on the fly to any nonstochastic disturbances

Tools

- Dynamic programming
- Riccati recursion/equations
- Linear matrix inequalities
- Landscape analysis
- Benign nonconvexity
- Local policy search

- Online convex optimization
- Regret minimization

Preview & main contributions

Part I: Policy optimization of mixed $\mathcal{H}_2/\mathcal{H}_{\infty}$ control [PWTZ,ZPT25]

- 1. A new structural characterization of the nonconvex landscape
- 2. Reveal hidden convexity: every stationary point is globally optimal

Part II: Online tracking with predictions for Koopman-linearizable systems [PSQZ]

- 1. First dynamic regret analysis of MPC for nonlinear dynamics with a lifted linear model
- 2. Achieve constant regret with a logarithmically sufficiently large prediction horizon

Part III: Online adaptive control & prediction in nonstationary environments

- 1. Goal: problem-dependent regret guarantees for online nonstochastic control
- 2. Goal: online adaptive prediction for time-varying linear dynamical systems

Talk outline

Part I.

Policy optimization of mixed $\mathcal{H}_2/\mathcal{H}_\infty$ control: benign nonconvexity

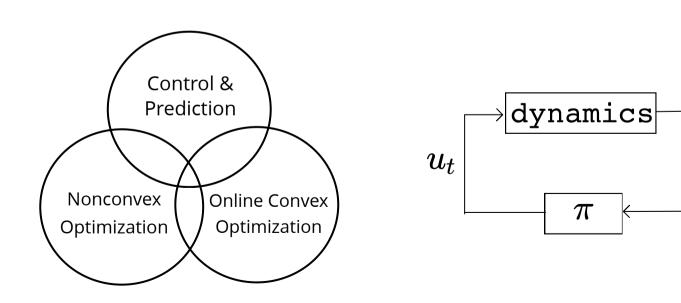
Part II.

Online tracking with predictions: dynamic regret analysis of MPC

Part III.

Online adaptive control & prediction under nonstationarity

 x_t



Policy optimization of mixed H2/Hinfty control

- A fundamental formulation to balance performance and robustness
- A new theoretical characterization from a **nonconvex** optimization perspective
- Why popular? e.g., success of RL, scalability, model-free policy search

Problem Setup

- 1. Continuous-time dynamics: $\dot{x}(t) = Ax(t) + Bu(t) + B_w w(t)$
- 2. Policy/controller parameterization: u(t) = Kx(t)

3. Performance signals:
$$z_2(t)=egin{bmatrix}Q_2^{1/2}x(t)\R_2^{1/2}u(t)\end{bmatrix}$$
 , $z_\infty(t)=egin{bmatrix}Q_\infty^{1/2}x(t)\R_\infty^{1/2}u(t)\end{bmatrix}$

$$\min_{K} \quad \widehat{\|T_{z_2w}(K)\|_{\mathcal{H}_2}^2} \leq J_{ ext{mix}}(K) := \operatorname{trace}(Q_2 + K^T R_2 K) X_K \ ext{s.t.} \quad K \in \mathcal{K}_{eta} := \{K : A + BK ext{ stable}, \widehat{\|T_{z_\infty w}(K)\|_{\mathcal{H}_\infty}} < eta \}$$

 X_K certifys the \mathcal{H}_∞ constraint, is the stabilizing solution to $(A+BK)X_K+X_K(A+BK)^T+eta^{-2}X_K(Q_\infty+K^TR_\infty K)X_K+W=0$

Our Contributions

Mixed H2/Hinfty policy optimization

```
egin{aligned} \min_{K} \quad J_{	ext{mix}}(K) &:= 	ext{trace}(Q_2 + K^T R_2 K) X_K \ 	ext{s.t.} \quad K \in \mathcal{K}_{eta} &:= \{K : A + B K 	ext{ stable}, \|T_{z_{\infty}w}(K)\|_{\mathcal{H}_{\infty}} < eta \} \end{aligned}
```

- Global optimality v.s. Riccati eqs [BH89] or LMI suboptimality [KR91]
- General two-channel v.s. single-channel formulation [ZHB21]
- Analysis using convex lifting [ZPT25] v.s. dynamic game [ZHB21]

Bridges policy optimization and convex LMI via non-strict Riccati inequalities

More specifically,

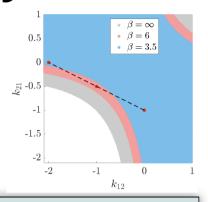
- 1. Analyze the **feasible set** \mathcal{K}_{β} and precisely characterize its **boundary**
- 2. Identify key structural properties of the **cost function** $J_{ ext{mix}}(\cdot)$
- 3. Establish benign nonconvexity: every stationary point is globally optimal

Feasible set and its boundary

The Hinfty-constrained domain

$$\mathcal{K}_eta = \{K: A + BK ext{ stable}, \|T_{z_\infty w}(K)\|_{\mathcal{H}_\infty} {<} eta \}$$

Open, path-connected, may be **nonconvex**, unbounded



Closure

$$\operatorname{cl}(\mathcal{K}_{\beta}) = \{K : A + BK \text{ stable}, \|T_{z_{\infty}w}(K)\|_{\mathcal{H}_{\infty}} \leq \beta\}$$

The proof relies on fundamental properties of the state feedback Hinfty cost

- Benign nonconvexity: no spurious stationary points (local minimum)
- Partial coercivity: cost diverges as the policy becomes marginally stabilizing

Why useful?

- 1. Define the extended cost over the entire closure
- 2. Provide more insight into the cost properties
- 3. Facilitate the proof of benign nonconvexity
- 4. Establish solvability for convex reformulations

Counter-examples

$$f(x) = x^2(x+1)$$
 Spurious local minimum, isolated point

$$C_1 = \{x : f(x) < 0\} = \{x : x < -1\}$$

$$C_2 = \{x : f(x) \le 0\} = \{x : x \le -1, x = 0\}$$

$$\operatorname{cl}(\mathcal{C}_1) = \{x: x \leq -1\}
eq \mathcal{C}_2$$

Another example

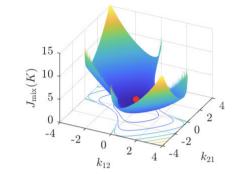
$$\mathcal{K}_{\beta} = \{K : A + BK \text{ stable}, \|T_{z_{\infty}w}(K)\|_{\mathcal{H}_{\infty}} < \beta\}$$

Fortunately, this is not the case for $J_\infty(K):=\|T_{z_\infty w}(K)\|_{\mathcal{H}_\infty}$ for all stabilizing K

Nonconvex landscape analysis

$$J_{ ext{mix}}(K) := ext{trace}(Q_2 + K^T R_2 K) X_K$$
 Minimal solution to

$$(A+BK)X_K+X_K(A+BK)^T+eta^{-2}X_K(Q_\infty+K^TR_\infty K)X_K+W=0$$



Properties of $J_{ ext{mix}}: ext{cl}(\mathcal{K}_eta) o \mathbb{R}$

- Continuous on the closure
- Noncoercive, real analytic in the interior
- Explicit gradient formulas in the interior

Hidden Convexity: every stationary point is globally optimal [PWTZ]

$$abla J_{ ext{mix}}(K) = 0 \Longleftrightarrow K \in rg \min_{K \in \mathcal{K}_eta} J_{ ext{mix}}(K)$$

- Recover optimality conditions (e.g., coupled Riccati equations)
- Facilitate the design of policy iteration algorithms
- Analysis based on ECL + non-strict LMIs and Riccati inequalities
- Existence and uniqueness of stationary points

Policy iteration (fixed-point iteration)

A special case when $z_2 = z_\infty$: $abla J_{ ext{mix}}(K) = 0 \Rightarrow K = -R^{-1}B^ op P_K$

- 1. Choose an initial policy $K_0 \in \mathcal{K}_{\beta}$ and let i=0.
- 2. Policy evaluation: solve a Riccati equation to obtain P_i
- 3. Policy improvement: $K_{i+1} = -R^{-1}B^{\top}P_i$
- 4. Set $i \leftarrow i + 1$ and go back to Step 2.

$$abla J_{ ext{mix}}(K) = 0 \Rightarrow K = -R_2^{-1}B^ op \Gamma_K(I+eta^{-2}lpha^2 X_K\Gamma_K)^{-1}$$

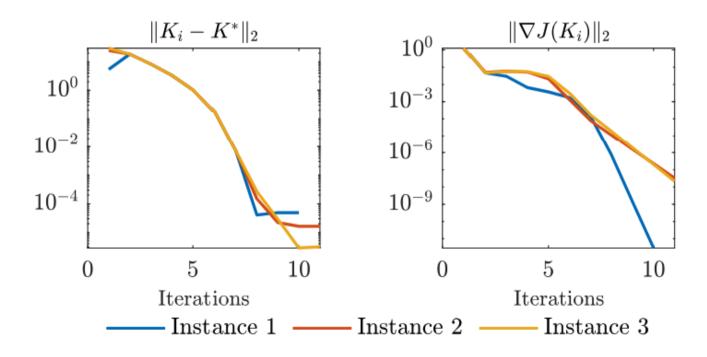
- 1. Choose an initial policy $K_0 \in \mathcal{K}_\beta$ and let i = 0.
- 2. Policy evaluation: solve a Riccati & Lyapunov equation to obtain X_i & Γ_i respectively
- 3. Policy improvement: $K_{i+1} = -R_2^{-1}B^{\top}\Gamma_i(I+\beta^{-2}\alpha^2X_i\Gamma_i)^{-1}$
- 4. Set $i \leftarrow i + 1$ and go back to Step 2.

Can also be viewed as Gauss-Newton local update

Experiment: empirical convergence of policy iteration

The (two-channel) policy iteration works well for sufficiently large β

- 1. The iterate converges to a (globally optimal) stationary point.
- 2. The iterates always stay in the feasible set \mathcal{K}_{β} .



- We have shown that a stationary point exists when β is large enough
- The full convergence analysis is left for future work

Experiment: policy iteration is more scalable

- PI is much more efficient to solve higher-dimensional instances
- An order of magnitude improvement in runtime

				K:60 imes60		K:90 imes 90	
		$I_1,\beta\!=\!10$		$I_2,\beta\!=\!15$		$\mathrm{I}_3,\beta\!=\!20$	
		2-ch	1-ch	2-ch	1-ch	2-CH	1-CH
ARE	time	-	0.02	-	0.03	-	0.05
	$J_{ m mix}^{1/2}$	-	0.47	-	0.02	-	0.04
	\mathcal{H}_2	-	0.47	-	1.12	-	1.22
	\mathcal{H}_{∞}	-	0.09	-	0.14	-	0.14
PI	time	0.10	0.06	0.28	0.09	0.61	0.46
	$J_{ m mix}^{1/2}$	0.99	0.47	1.99	0.02	0.04	0.04
	\mathcal{H}_2	0.99	0.47	1.99	1.12	2.44	1.22
	\mathcal{H}_{∞}	1.98	0.09	7.72	0.14	9.27	0.14
LMI	time	0.27	0.37	11.3	20.1	89.7	143
	$J_{ m mix}^{1/2}$	1.00	0.47	1.20	1.12	0.04	1.22
	\mathcal{H}_2	0.99	0.47	1.99	1.12	2.44	1.22
	\mathcal{H}_{∞}	1.98	0.09	7.77	0.14	9.27	0.13
hifoo	time	1.43	8.57	35.6	27.5	262	221
	\mathcal{H}_2	0.99	0.47	1.99	1.12	2.44	1.22
	\mathcal{H}_{∞}	2.01	0.09	8.57	0.14	10.1	0.14

Talk outline

Part I.

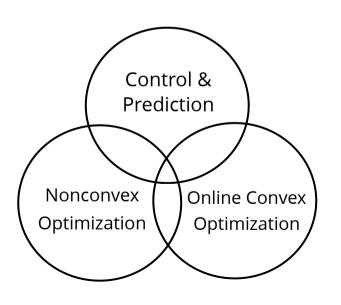
Policy optimization of mixed $\mathcal{H}_2/\mathcal{H}_{\infty}$ control: benign nonconvexity

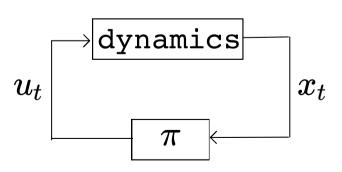
Part II.

Online tracking with predictions: dynamic regret analysis of MPC

Part III.

Online adaptive control & prediction under nonstationarity





Tracking of nonlinear systems

Nonlinear dynamics

$$egin{aligned} z_{t+1} = f(z_t, u_t) \end{aligned}$$

Koopman-linearizable:

there exist a lifting function ψ and A, B, C s.t. the lifted state $x_t = \psi(z_t)$ evolves linearly $x_{t+1} = Ax_t + Bu_t$ and $z_t = Cx_t$

Stage tracking cost: target trajectory

$$\ell(z_t, u_t; r_t) := \|z_t - r_t\|_{Q_z}^2 + \|u_t\|_R^2 \ \ell_{ ext{lft}}(x_t, u_t; r_t) := \|x_t - \psi(r_t)\|_Q^2 + \|u_t\|_R^2$$

$$\ell_{ ext{lft}}(x_t, u_t; r_t) := \|x_t - \psi(r_t)\|_Q^2 + \|u_t\|_R^2$$

$$Q = C^{ op} Q_z C$$

$$\min_{u_{1:T}} \;\; \sum_{i=1}^T \|z_t - r_t\|_{Q_z}^2 + \|u_t\|_R^2$$

s.t.
$$z_t = f(z_t, u_t), z_1$$
 given

Online tracking with predictions

Uncertainty modeling (target trajectory and its prediction)

At each time step,

- 1. Learner observes z_t and receives W-step predictions $r_{t:t+W-1}$
- 2. Learner picks u_t , and suffers the tracking cost $\ell(z_t,u_t;r_t)$
- 3. Adversary/environment selects target state r_{t+W}
- 4. State z_t evolves to z_{t+1} according to f

Goal: minimize the (restricted) dynamic regret of online policy π

$$R_T^\star(\pi) = \underbrace{\sum_{t=1}^T \ell(z_t, u_t; r_t)}_{ ext{Tracking cost}} - \underbrace{\min_{u_{1:T}^\star} \sum_{t=1}^T \ell(z_t, u_t^\star; r_t)}_{ ext{Tracking cost}}$$

Globally optimal **"offline non-causal policy"** with full knowledge of $r_{1:T}$ and dynamics f

Optimal (offline noncausal) policy in hindsight

$$egin{array}{ll} \min _{u_{1:T}} & \sum _{i=1}^T \ell(z_t,u_t;r_t) \ \mathrm{s.t.} & z_t = f(z_t,u_t),\ z_1 \mathrm{\ given} \end{array}$$

Koopman linearizable

$$egin{array}{ll} \min_{u_{1:T}} & \sum_{i=1}^T \ell_{ ext{lft}}(x_t,u_t;r_t) \ ext{s.t.} & x_{t+1} = Ax_t + Bu_t, \ x_1 = \psi(z_1) \end{array}$$

Riccati recursion:
$$P_T = Q$$
 and $P_t = Q + A^ op P_{t+1}A - A^ op P_{t+1}B(R + B^ op P_{t+1}B)^{-1}B^ op P_{t+1}A$

- ullet Characterize the value or cost-to-go function: $V_t(x_t) = x_t^ op P_t x_t$
- Induce optimal control gains: $K_t^\star = (R + B^ op P_{t+1}B)^{-1}B^ op P_{t+1}A$
- ullet State transition matrix $A_{\mathrm{cl},t_1 o t_2}:=A_{\mathrm{cl},t_2}A_{\mathrm{cl},t_2-1}\cdots A_{\mathrm{cl},t_1+1}$ with $A_{\mathrm{cl},t}:=A-BK_t^\star$

Globally optimal time-varying policy [FS20, ZLL21, GH22]:

$$\pi_t^{\star}(x_t; \mathbf{r}) = u_t^{\star} = \underbrace{-K_t^{\star}(x_t - \psi(r_t))}_{ ext{feedback}} - \underbrace{\sum_{i=t}^{T-1} K_{t o i}^{\star} \left(A\psi(r_i) - \psi(r_{i+1})
ight)}_{ ext{feedforward}}$$

[FS20] D. Foster and M. Simchowitz. *Logarithmic regret for adversarial online control*. ICML, 2020 [ZLL21] R. Zhang, Y. Li, and Na Li. *On the regret analysis of online LQR control with predictions*. IEEE ACC, 2021 [GH22] G. Goel and B. Hassibi. *The power of linear controllers in LQR control*. IEEE CDC, 2022

Model Predictive Control (MPC)

The most widely used approach for online control with predictions

At each step t, solve a **shorter-horizon** optimization problem and apply the **first** action from the optimized action sequence

Knowledge of $r_{t:t+W-1}$ from prediction

$$egin{aligned} \min_{u_{1:W|t}} & \sum_{i=1}^W \ell(z_{i|t}, u_{i|t}; r_{t+i-1}) \ ext{s.t.} & z_{i+1|t} = f(z_{i|t}, u_{i|t}) \ z_{1|t} = z_t \end{aligned}$$
 Koopman $\lim_{u_{1:W|t}} & \sum_{i=1}^W \ell_{ ext{lft}}(x_{i|t}, u_{i|t}; r_{t+i-1}) \ ext{s.t.} & x_{i+1|t} = Ax_{i|t} + Bu_{i|t} \ ext{s.t.} & x_{1|t} = x_t = \psi(z_t) \end{aligned}$

Some rationales. model, disturbance, cost full-horizon DP

- Model-based approach to tackle uncertainty and computational difficulty
- Can be viewed as (multistep lookahead) policy iteration for approximate DP

MPC as an online feedback policy

Generally, MPC (implicitly) defines a **time-varying** state **feedback** policy

At each
$$t$$
, solve $u_{1:W|t}^{\star}(\mathbf{x_t}) = rgmin_{u_{1:W|t}} \left\{ \sum_{i=1}^{W} \ell_{ ext{lft}}(x_{i|t}, u_{i|t}; r_{t+i-1}) : x_{i+1|t} = Ax_{i|t} + Bu_{i|t}, \; x_{1|t} = \mathbf{x_t}
ight\}$

In our case, MPC defines a time-varying policy (due to $r_{1:T}$)

$$\pi_t^{ ext{MPC}}(oldsymbol{x_t}) = u_{1|t}^\star = \underbrace{-K_1^{ ext{MPC}}(x_t - \psi(r_t))}_{ ext{feedback}} - \underbrace{\sum_{i=t}^{t+W-2} K_{1 o i-t+1}^{ ext{MPC}}(A\psi(r_i) - \psi(r_{i+1}))}_{ ext{feedforward}}$$

Stationary gains: $K_1^{ ext{MPC}}=K_{T-W}^\star$ and $\{K_{1 o k}^{ ext{MPC}}\}_{k=0}^W=\{K_{T-W o T-W+k}^\star\ \}_{k=0}^W$

Dynamic regret guarantee

Main result (informal) [PSQZ]

As long as W is large enough, the dynamic regret satisfies $R_T^\star(\mathrm{MPC}) = O(W^2 \lambda^{2W} T)$ where $\lambda \in (0,1)$

- Grows linearly with *T*
- Decays exponentially with W
- 1. No terminal cost design, but a sufficiently long W is required.
- 2. The power of predictions + the exponential convergence of stable linear dynamics.

$$\begin{array}{l} \bullet \ \ \mathsf{Factor} \ \gamma_\infty := \frac{1}{2}(1+\rho(A_{\mathrm{cl},\infty})) \ \mathsf{captures} \ \mathsf{stability} \ \mathsf{of} \ A_{\mathrm{cl},t_1 \to t_2} \\ \lambda = \max\{\gamma_\infty,\rho_\infty\} \ \bullet \ \ \mathsf{Factor} \ \rho_\infty \colon \|P_t - P_\infty\| = O(\rho_\infty^{T-t}), \ \|K_t - K_\infty\| = O(\rho_\infty^{T-t}) \\ \bullet \ \ W \ge \Delta_{\mathrm{stab}} = O(\log(1-\rho(A_{\mathrm{cl},\infty}))^{-1}) \end{array}$$

Dynamic regret analysis

Performance difference lemma: $R_T^\star(ext{MPC}) = \sum_{t=1}^T \|u_t^{ ext{MPC}} - u_t^\star\|_{\Sigma_t}^2$

$$u_t^{ ext{MPC}} - u_t^\star = \underbrace{\left(K_t^\star - K_1^{ ext{MPC}}
ight)\left(x_t - \psi(r_t)
ight)}_{ ext{Feedback}} + \underbrace{\sum_{i=t}^{t+W-2} (K_{t o i}^\star - K_{1 o i-t+1}^{ ext{MPC}})w_i}_{ ext{Feedforward}} + \underbrace{\sum_{i=t+W-1}^{T-1} K_{t o i}^\star w_i}_{ ext{Truncation}}$$

$$R_T^{\star}(\mathrm{MPC}) \le (1) + (2) + (3)$$

- (1) Truncation deviation: $\sum_{t=1}^{T-W} \left\| \sum_{i=t+W-1}^{T-1} K_{t o i}^\star w_i \right\|_{\Sigma_t}^2 = O(\gamma_\infty^{2W} T)$
- (2) Feedback deviation: $\sum_{t=1}^{T-W} \left\| (K_t^\star K_1^{ ext{MPC}}) \left(x_t \psi(r_t)
 ight)
 ight\|_{\Sigma_t}^2 = O(
 ho_\infty^{2W} T)$
- (3) Feedforward deviation: $\sum_{t=1}^{T-W} \left\| \sum_{i=t}^{t+W-2} (K_{t o i}^\star K_{1 o i-t+1}^{ ext{MPC}}) w_i \right\|_{\Sigma_t}^2 = O(\lambda_\infty^{2W} T)$

Experiment: tracking a reference sinusoid

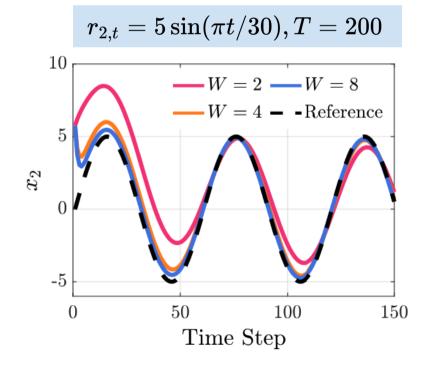
Koopman-linearizable nonlinear dynamics:

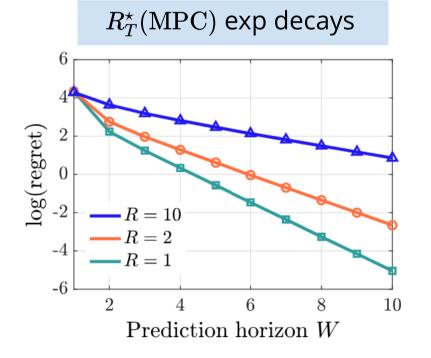
$$egin{bmatrix} z_{1,t+1} \ z_{2,t+1} \end{bmatrix} = egin{bmatrix} 0.99z_{1,t} \ 0.9z_{2,t} + z_{1,t}^2 + z_{1,t}^3 + z_{1,t}^4 + u_t \end{bmatrix}$$

Linear dynamics in the lifted space:

$$egin{bmatrix} z_{1,t+1} \ z_{2,t+1} \end{bmatrix} = egin{bmatrix} 0.99z_{1,t} \ 0.9z_{2,t} + z_{1,t}^2 + z_{1,t}^3 + z_{1,t}^4 + u_t \end{bmatrix} egin{bmatrix} x_{t+1} = egin{bmatrix} 0.99 & 0 & 0 & 0 & 0 \ 0 & 0.99 & 1 & 1 & 1 \ 0 & 0 & 0.99^2 & 0 & 0 \ 0 & 0 & 0 & 0.99^3 & 0 \ 0 & 0 & 0 & 0 & 0.99^4 \end{bmatrix} x_t + egin{bmatrix} 0 \ 1 \ 0 \ 0 \ 0 \end{bmatrix} u_t \ \begin{bmatrix} z_{1,t+1} \ z_{2,t+1} \end{bmatrix} = egin{bmatrix} 0.99z_{1,t} \ 0.9z_{2,t} + z_{1,t}^2 + z_{1,t}^3 + z_{1,t}^4 + u_t \end{bmatrix} \begin{bmatrix} z_{t+1} \ z_{t+1} \end{bmatrix} \begin{bmatrix} 0.99 & 0 & 0 & 0 & 0 & 0 \ 0 & 0.99^2 & 0 & 0 \ 0 & 0 & 0.99^3 & 0 \ 0 & 0 & 0 & 0.99^4 \end{bmatrix} \begin{bmatrix} z_{t+1} \ z_{t+1} \ z_{t+1} \end{bmatrix} \begin{bmatrix} 0.99z_{1,t} \ z_{t+1} \ z_{t+1} \ z_{t+1} \end{bmatrix} \begin{bmatrix} 0.99z_{1,t} \ z_{t+1} \ z_{t+1} \ z_{t+1} \ z_{t+1} \end{bmatrix} \begin{bmatrix} 0.99z_{1,t} \ z_{t+1} \ z_{t+1} \ z_{t+1} \ z_{t+1} \end{bmatrix} \begin{bmatrix} 0.99z_{1,t} \ z_{t+1} \ z_{t+1} \ z_{t+1} \ z_{t+1} \ z_{t+1} \end{bmatrix} \begin{bmatrix} 0.99z_{1,t} \ z_{t+1} \ z_{$$

Lifted state: $x:=[z_1,z_2,z_1^2,z_1^3,z_1^4]^ op$, with state recovery $z_t=egin{bmatrix}1&0&0&0&0\\0&1&0&0&0\end{bmatrix}x_t$





Experiment: two-wheeled robots

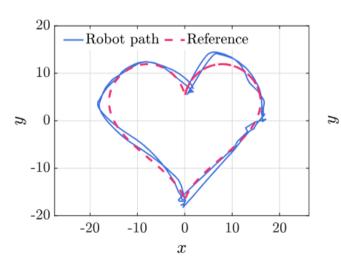
Non-Koopman-linearizable nonlinear dynamics

$$egin{aligned} z_{x,t+1} &= z_{x,t} + \Delta t \cdot \cos(z_{\delta,t}) \cdot v_t, \ z_{y,t+1} &= z_{y,t} + \Delta t \cdot \sin(z_{\delta,t}) \cdot v_t, \ z_{\delta,t+1} &= z_{\delta,t} + \Delta t \cdot w_t, \end{aligned}$$

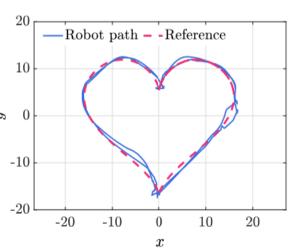
A heart-shaped reference trajectory:

$$egin{align} r_{x,t} &= 16 \sin^3(t-6), \ r_{y,t} &= 13 \cos(t) - 5 \cos(2t-12) - 2 \cos(3t-18) - \cos(4t-24), \ r_{\delta,t} &= rctan\left(rac{r_{y,t+1} - r_{y,t}}{r_{x,t+1} - r_{x,t}}
ight). \end{aligned}$$

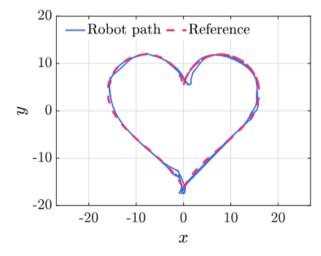
$$W=6$$



$$W=9$$



$$W = 12$$



Talk outline

Part I.

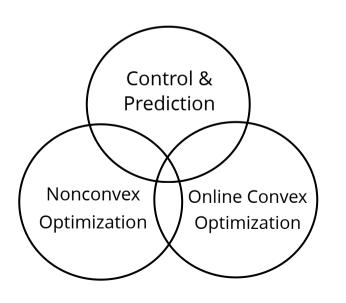
Policy optimization of mixed $\mathcal{H}_2/\mathcal{H}_\infty$ control: benign nonconvexity

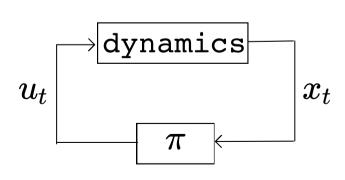
Part II.

Online tracking with predictions: dynamic regret analysis of MPC

Part III.

Online adaptive control & prediction under nonstationarity





Online learning / convex optimization

A repeated game between learner & environment (adversary)

for $t=1,2,\ldots,T$, learner

- ullet selects $x_t \in \mathcal{X}$
- ullet receives convex $f_t:\mathcal{X} o\mathbb{R}$
- suffers loss $f_t(x_t)$

The goal of the learner is to minimize $\sum_{t=1}^{T} f_t(x_t)$

The adversarial nature of f_t hinders a prior computation of optimal decisions

Goal: minimize (static) regret

the best fixed comparator w/ in hindsight

$$R_T(w) = \sum_{t=1}^T f_t(x_t) - \sum_{t=1}^T f_t(\overset{ee}{w})$$

How to connect online learning with control?

Some excellent treatment of online learning:

[E16] E. Hazan. *Introduction to online convex optimization*. Foundations and Trends in Optimization, 2016.

[F19] O. Francesco. A modern introduction to online learning. arXiv preprint, 2019.

Online control under nonstochastic disturbance

for $t = 1, 2, \dots, T$, learner

- ullet observes x_t , selects $u_t \in \mathcal{U}$
- ullet receives convex $c_t: \mathcal{X} imes \mathcal{U}
 ightarrow \mathbb{R}$ and disturbance w_t
- suffers loss $c_t(x_t, u_t)$ and state evolves

Goal: minimize (static) policy regret [ABHKS19]

$$R_T(\pi) = \max_{\|w_t\| \leq 1} \left(\sum_{t=1}^T c_t(x_t, u_t) - \min_{\pi \in \Pi} \sum_{t=1}^T c_t(\hat{x}_t, \pi(\hat{x}_t))
ight)$$

Main challenges: nonconvexity, trajectory mismatch

Techniques: OCO with memory [ABHKS19] or OCO with delayed feedback [FS20]

$$egin{array}{lll} \min_{\pi} & \sum_{t=1}^{T} \mathrm{cost}_{t}(x_{t}, u_{t}) & u_{t} & & dynamics \ \mathrm{s.t.} & x_{t+1} = \mathrm{dynamics}_{t}(x_{t}, u_{t}, w_{t}) & & \pi \end{array} egin{array}{c} x_{t} & & & \end{array}$$

Offline Synthesis

- 1. Specific disturbance models (H2/H-infty) and quadratic cost
- 2. Simple, explicit, closed-form globally optimal policy
- 3. Absolute optimality wrt the disturbance model

Online Learning

- 1. Arbitrary disturbance sequences and convex cost functions
- 2. Generally intractable to find a globally optimal policy
- 3. Relative optimality: compete with a certain policy class
- 4. Instance-optimality wrt the actual realized disturbance and cost

Generalizations: three layers of adaptivity

Static regret: adaptive to adversary

$$R_T(x) = \sum_{t=1}^T f_t(x_t) - \sum_{t=1}^T f_t(x) = \mathcal{O}(\sqrt{T})$$

Universal dynamic regret: adaptive to any nonstationarity

$$R_T(w_{1:T}) = \sum_{t=1}^T f_t(x_t) - \sum_{t=1}^T f_t(w_t) = \mathcal{O}(\sqrt{T(1+P_T)}), \;\; P_T = \sum_{t=2}^T \|w_t - w_{t-1}\|_2$$

Problem-dependent regret: adaptive to any problem instances

$$egin{aligned} R_T(w_{1:T}) &= \sum_{t=1}^T f_t(x_t) - \sum_{t=1}^T f_t(w_t) = \mathcal{O}(\sqrt{(1 + P_T + \min\{V_T, F_T\})(1 + P_T)}) \ V_T &= \sum_{t=2}^T \sup_{x \in \mathcal{X}} \|
abla f_t(x) -
abla$$

Ongoing and future work

Online adaptive control and prediction under nonstationarity

- 1. Problem-dependent regret minimization for online nonstochastic control
- 2. Online time-series prediction for time-varying linear dynamical systems

Main challenges for control and prediction:

Nonconvexity, trajectory mismatch (memory)

Tools/techniques from online learning:

convex relaxation, meta-base structure [ZLZ18], switching cost regularization [ZYWZ23], tailored optimism [ZZZZ24]

Conclusion

Offline Planning → Policy Optimization → Online Learning

Part I.

Mixed $\mathcal{H}_2/\mathcal{H}_{\infty}$ policy optimization

Part II.

Dynamic regret analysis of MPC

Part III.

Online adaptive control & prediction

Offline planning -> Policy optimization [PWTZ, ZPT25]

Offline planning ->
Online learning

[PSQZ]

Generalize offline planning & policy optimization

[PWTZ] **C. Pai**, Y. Watanabe, Y. Tang, and Y. Zheng. *Policy Optimization of Mixed* $\mathcal{H}_2/\mathcal{H}_{\infty}$ *Control: Benign Nonconvexity and Global Optimality.* Submitted to Automatica

[ZPT25] Y. Zheng, **C. Pai**, and Y. Tang. *Extended Convex Lifting for Policy Optimization of Optimal and Robust Control*. Learning for Dynamics and Control (L4DC) 2025

[PSQZ] **C. Pai**, X. Shang, J. Qian, and Y. Zheng. *Online Tracking with Predictions for Nonlinear Systems with Koopman Linear Embedding*. Submitted to L4DC

Thanks for your attention! Q&A

Some other relevant projects I was involved in:

[ZPT1] Y. Zheng, **C. Pai**, and Y. Tang. *Benign Nonconvex Landscapes in Optimal and Robust Control, Part I: Global Optimality.* Submitted to IEEE TAC

[ZPT2] Y. Zheng, **C. Pai**, and Y. Tang. *Benign Nonconvex Landscapes in Optimal and Robust Control, Part II: Extended Convex Lifting.* Submitted to IEEE TAC

[WPZ25] Y. Watanabe, **C. Pai**, and Y. Zheng. *Semidefinite Programming Duality in Infinite-Horizon Linear Quadratic Differential Games*. IEEE CDC, 2025